
2005 Special Issue

Bayesian approach to feature selection and parameter tuning

for support vector machine classifiers

Carl Golda,*, Alex Holuba, Peter Sollichb

aComputation and Neural Systems, California Institute of Technology, 139-74, Pasadena, CA 91125, USA
bDepartment of Mathematics, King’s College London, Strand, London WC2R 2LS, UK

Abstract

A Bayesian point of view of SVM classifiers allows the definition of a quantity analogous to the evidence in probabilistic models. By

maximizing this one can systematically tune hyperparameters and, via automatic relevance determination (ARD), select relevant input

features. Evidence gradients are expressed as averages over the associated posterior and can be approximated using Hybrid Monte Carlo

(HMC) sampling. We describe how a Nyström approximation of the Gram matrix can be used to speed up sampling times significantly while

maintaining almost unchanged classification accuracy. In experiments on classification problems with a significant number of irrelevant

features this approach to ARD can give a significant improvement in classification performance over more traditional, non-ARD, SVM

systems. The final tuned hyperparameter values provide a useful criterion for pruning irrelevant features, and we define a measure of

relevance with which to determine systematically how many features should be removed. This use of ARD for hard feature selection can

improve classification accuracy in non-ARD SVMs. In the majority of cases, however, we find that in data sets constructed by human domain

experts the performance of non-ARD SVMs is largely insensitive to the presence of some less relevant features. Eliminating such features via

ARD then does not improve classification accuracy, but leads to impressive reductions in the number of features required, by up to 75%.1

q 2005 Elsevier Ltd. All rights reserved.
1. SVM classification

In the usual way, we assume a set D of n training

examples (xi, yi) with binary outputs yiZG1. The SVM

maps the inputs x to vectors f(x) in some high-dimensional

feature space and uses a maximal margin hyperplane,

w$f(x)CbZ0, to separate the training examples. This is

equivalent to minimizing kwk2 subject to the constraints

yi(w$f(xi)Cb)R1 ci; see e.g. (Cristianini & Shawe-Tay-

lor, 2000). The offset parameter b is treated as incorporated

into w in the following, by augmenting feature space vectors

to f(x)/(f(x), 1)

To avoid fitting noise in the training data, ‘slack

variables’ xiR0 are introduced to relax the margin

constraints to yiw$f(xi)R1Kxici and the term ðC=pÞ!P
i x

p
i is then added to the objective function, with a penalty

coefficient C and typically pZ1 or 2. This gives the SVM
0893-6080/$ - see front matter q 2005 Elsevier Ltd. All rights reserved.

doi:10.1016/j.neunet.2005.06.044

* Corresponding author.

E-mail address: carlg@caltech.edu (C. Gold).
1 An abbreviated version of some portions of this article appeared in

(Gold & Sollich, 2005), published under the IEEE copyright.
optimization problem: Find w to minimize

1

2
jjwjj2 CC

X
i

lpðyiw$fðxiÞÞ

lpðzÞ Z
1

p
ð1KzÞpHð1KzÞ

(1)

where the Heaviside step function H(1Kz) ensures that the

loss function lp(z) is zero for zO1. For pZ1, lp(z) is called

(shifted) hinge loss or soft margin loss.

For a practical solution, one uses Lagrange multipliers ai

conjugate to the constraints yiw$f(xi)R1Kxi and finds in

the standard way that the optimal weight vector is

w�Z
P

i yiaifðxiÞ; see e.g. (Cristianini & Shawe-Taylor,

2000). For the linear penalty case pZ1, the ai are found

from

max
0%ai%C

X
i

aiK
1

2

X
i;j

aiajyiyjKij

 !
(2)

Here KijZK(xi, xj) are the elements of the Gram matrix

K, obtained by evaluating the kernel K(x, x 0)Zf(x)$(x 0) for

all pairs of training inputs. The corresponding optimal latent

or decision function is q�ðxÞZw�$fðxÞZ
P

i yiaiKðx; xiÞ.
Neural Networks 18 (2005) 693–701
www.elsevier.com/locate/neunet

http://www.elsevier.com/locate/neunet

C. Gold et al. / Neural Networks 18 (2005) 693–701694
Only the xi with aiO0 contribute to this sum; these are

called support vectors (SVs). A similar result can be found

for the quadratic penalty case (Cristianini & Shawe-Taylor,

2000). A common choice of kernel is the radial basis

function (RBF) form Kðx; x0ÞZexpðKcjxKx0j2Þ, and we use

a version of this augmented for Automatic Relevance

Determination (ARD):

Kðx; x0Þ Z k0exp K
Xd

aZ1

ðxaKx0aÞ2

2l2
a

" #
Ckoff (3)

The la are length scales, one for each of the d input

dimensions or features. One of the challenges in SVM

classification is the hyperparameter tuning problem: find

optimal—in terms of generalization performance—values

for the (many, for large d) hyperparameters {la}, k0, koff and

C, preferably without holding out parts of D as a test set. A

related challenge common to all classification systems is the

feature selection problem: determining an optimal set of

attributes of the input for making the classification. Tuning

individual length scales for each feature via ARD allows

both problems to be addressed simultaneously, as described

below.
2. Bayesian interpretation of SVMs

In the probabilistic interpretation of SVM classification

(see e.g. (Sollich, 2002, 2000) and references below), one

regards (1) as a negative log-posterior probability for the

parameters w of the SVM, and the conventional SVM

classifier as the maximum a posteriori (MAP) solution of

the corresponding probabilistic inference problem. The

first term in (1) gives the prior QðwÞfexpðKð1=2Þjjwjj2Þ

This is a Gaussian prior on w; the components of w are

uncorrelated with each other and have unit variance.

Because only the latent function values q(x)Zw$f(x)—

rather than w itself—appear in the second, data

dependent term of (1), it makes sense to express the

prior directly as a distribution over these. The q(x) have a

joint Gaussian distribution because the components of w
do, with covariances given by hq(x)q(x 0)iZ
h(f(x)$w)(w$f(x 0))iZK(x, x 0). The SVM prior is, there-

fore, a Gaussian process (GP) over the functions q, with

zero mean and with the kernel K(x, x 0) as covariance

function (Seeger, 2000; Opper & Winther, 2000a,b). The

second term in (1) similarly becomes a (negative) log-

likelihood if we define the probability of obtaining output

y for a given x (and q) as

Qðy ZG1jx; qÞ Z kðCÞexp½KClpðyqðxÞÞ
 (4)

The constant factor k(C) is a normalization constant.

The overall normalization of the probability model is

somewhat subtle, and fully discussed in (Sollich, 2002);

in line with other work on probabilistic interpretations of
SVM classifiers (Seeger, 2000; Opper & Winther, 2000b;

Kwok, 2000) we disregard this issue here.
2.1. Evidence gradients

From the probabilistic point of view it becomes

natural to tune hyperparameters to maximize the

posterior likelihood of the data, or evidence,

QðYjXÞZ
Ð

dq QðYjX; qÞQðqÞ; the integration is over the

latent function values q(x) at all different input points x

and X and Y are the training input and output sets,

respectively. Values of q(x) at non-training inputs can be

integrated out trivially, so that

QðYjXÞ Z

ð
dq QðYjX; qÞQðqÞ (5)

QðYjXÞ Z

ð
dq
Y

i

Qðyijxi; qiÞQðqÞ (6)

with qZ(q1,.,qn). Because Q(q) is a zero mean

Gaussian process, the marginal distribution Q(q) is a

zero mean Gaussian with covariance matrix K. The

evidence is, therefore,

QðYjXÞ Z j2pKjK1=2
knðCÞ

!

ð
dq exp K

1

2
qT KK1qK

X
i

ClpðyiqiÞ

" #
(7)

It is difficult to obtain accurate numerical estimates of

the evidence itself, but one can estimate its gradients

with respect to the hyperparameters and use these in a

gradient ascent algorithm, without ever calculating the

actual value of the evidence. Starting from (7) one

finds for the derivative of the normalized log-evidence

EðYjXÞZnK1ln QðYjXÞ w.r.t. the penalty parameter C

(Gold & Sollich, 2003)

v

vC
EðYjXÞ Z

v ln kðCÞ

vC
K

1

n

X
i

lpðyiqiÞ

* +
(8)

where the average is, as expected on general grounds,

over the posterior Q(qjD)fQ(YjX, q)Q(q). A little more

algebra yields the derivative w.r.t. any parameter l

appearing in the kernel (Gold & Sollich, 2003)

v

vl
EðYjXÞ ZK

C

2n
l0Tp ðYqÞY

vK

vl
KK1q

�
(9)

where YZdiag(y1,.,yn) while l0pðYqÞ is understood

component-wise, i.e. l0Tp ðYqÞZ ðl0pðy1q1Þ.l0pðynqnÞÞ; also

l0pðzÞhdlp=dz.

The posterior averages required in the expressions (8)

and (9) are still not analytically tractable; we therefore use

Hybrid Monte Carlo (HMC, see e.g. (Neal, 1993)) to

estimate them numerically. The HMC algorithm simulates a

stochastic dynamics with a Hamiltonian ‘energy’ defined by

C. Gold et al. / Neural Networks 18 (2005) 693–701 695
the target distribution plus a ‘momentum’, or kinetic energy

term. Denoting the momentum variables p, a suitable

Hamiltonian for our case is

Hðq;pÞ Z
1

2
pTMp C

1

2
qTKK1q CVðqÞ (10)

VðqÞ Z C
X

i

lpðyiqiÞ (11)

where M is the inverse covariance matrix of the momenta,

chosen later to simplify the computation. The corresponding

stationary ‘Boltzmann’ distribution Pðq; pÞfexp½KHðq;pÞ

fexpðKð1=2ÞpTMpÞQðqjDÞ factorizes over q and p, so that

samples from Q(qjD) can be obtained by sampling from

P(q, p) and discarding the momenta p. The only role of the

p is to help ensure a representative sampling of the

posterior. An update step in the HMC algorithm consists

of: (1) updating a randomly chosen momentum variable pi

by Gibbs sampling according to the Gaussian distribution

exp(K(1/2)pTMp); (2) changing both q and p by moving

along a Hamiltonian trajectory for some specified ‘time’ t;

the trajectory is determined by solving an appropriately

discretized version of the differential equations

dqi

dt
Z

vH

vpi

Z ðMpÞi (12)

dpi

dt
ZK

vH

vqi

ZKðKK1qÞiKCyil
0
pðyiqiÞ (13)

For an exact solution of these equations, H would remain

constant; due to the discretization, small changes in H are

possible and one accepts the update of q and p from the

beginning to the end of the trajectory with the usual

Metropolis acceptance rule.

The occurrence of the O(n3) matrix inversion KK1 in

(13) may seem problematic, but can be avoided with an

appropriate choice of M (Gold & Sollich, 2003). The

multiplications of n!n matrices by n-dimensional vectors,

requiring O(n2) operation, are a more serious problem

because the HMC sampling process gives a large prefactor:

averages over the posterior distribution are taken by

sampling after each trajectory step, and repeating the

procedure over some large number of steps. In practice,

the first half of the steps are discarded to allow for

equilibration and we chose a total of 40,000 samples, giving

20,000 ‘production samples’. The discretization of Eq. (13)

into time intervals Dt also means that all operations must be

performed l times to approximate a trajectory of length lDt.

With our chosen values DtZ0.05, lZ10, estimating the

gradients by HMC then requires 400,000 matrix multipli-

cations of O(n2). Results in (Gold & Sollich, 2003) showed

that while tuning SVM hyperparameters using the evidence

gradients calculated in this way gives impressive general-

ization performance, it requires an amount of computing

time that would be impractical under most circumstances.
3. The Nyström approximation to the Gram matrix

As explained in e.g. (Williams & Seeger, 2001), the

Nyström method is very useful for speeding up many kernel

algorithms. We apply it here to the Gram matrix. This is first

approximated by a truncated eigendecomposition as used in

e.g. principal component analysis,

Kz
Xp

iZ1

liuiu
T
i (14)

Here l1O.Olp are the largest p!n eigenvalues of K

and ui the corresponding eigenvectors. Implicitly, the

truncation to p!n assumes that the spectrum of K is

dominated by a small fraction of large eigenvalues, with a

negligible tail of smaller eigenvalues. This assumption is

reasonable because for RBF kernels (3) the kernel function

has a quickly decaying spectrum of this type; for large n, the

leading eigenvalues of the Gram matrix should then exhibit

the same fast decay.

The approximation (14) is still costly because it involves

determination of many of the eigenvalues and associated

eigenvectors of K. The idea of the Nyström method is to

avoid this by estimating the li and ui from a random

subsample of size m of the full training set, i.e. from a

submatrix Km,m. If the latter has eigenvalues l
ðmÞ
i and

eigenvectors uðmÞ
i , the Nyström approximation to (14) is

(Williams & Seeger, 2001)

~K Z
Xp

iZ1

~li ~ui ~u
T
i (15)

~li Z
n

m
l
ðmÞ
i (16)

~ui Z

ffiffiffiffi
m

n

r
Kn;muðmÞ

i (17)

where Kn,m is the n!m submatrix of K containing the

columns from the selected subsample. The factor n/m

relating the eigenvalues of the full Gram matrix and the

subsample Km,m is easy to understand for the case of an RBF

kernel, where the diagonal entries of K are all equal to k0C
koff; thus the trace of K is bigger by a factor n/m than that of

Km,m and the same proportionality must hold for the

eigenvalues, if indeed the l
ðmÞ
i are good estimators for the li.

The advantage of the Nyström approach is that its run time

is only O(m2n) rather than the usual O(n3) required for a full

eigensolution.

Because the Nyström approximation estimates only m

eigenvalues, at most m terms can be used in the expansion

(14) of K. However, if the l
ðmÞ
i decay sufficiently quickly,

then one can often get away with having p not just equal to

m but in fact substantially smaller. Experiments in

(Williams & Seeger, 2001) showed that for e.g. Gaussian

process classifiers values of m (and thus p) significantly

smaller than n can often be used without impairing

C. Gold et al. / Neural Networks 18 (2005) 693–701696
performance. We, therefore, next describe how to adapt the

Nyström approach to our aim of SVM hyperparameter

tuning by evidence gradient ascent.
3.1. Application to evidence gradient estimation by HMC

To apply the Nyström method to our HMC sampling, we

approximate q as

q Z Vb (18)

where V is an n!p matrix with columns ~ui
~l
1=2
i , and use for

the HMC the Hamiltonian

Hðb;pÞ Z
1

2
pT p C

1

2
bT b CC

X
i

lpððYVbÞiÞ (19)

The term (1/2)bTb corresponds to a zero-mean Gaussian

prior on b with hbbTiZ1. The choice of the matrix V linking

b to q was made precisely such that this simple prior, with

i.i.d. unit Gaussian components of the vector b, gives us the

desired hqqT iZVVT Z ~K. The primary variables for the

simulation are now p and b, both only p-dimensional

vectors. The vector b is initialized using the pseudo-inverse

bZ(VTV)K1VTq*, with q* from the conventional (MAP)

SVM solution; this ensures that Vb is the closest

approximation to q* within the subspace accessible within

our approximation (i.e. the space spanned by the columns of

the matrix V). When needed for evaluating gradients, q is

calculated from b according to (18). This relation was

already used in writing down the last term of H in (19). The

HMC trajectories for b and p are again determined by

solving Hamilton’s equations, i.e.

dbi

dt
Z

vH

vpi

Z pi (20)

dpi

dt
Z

vH

vbi

ZKbi CCðVTY0lðYVbÞÞi (21)

For the average (9), we also need ~K
K1

qZ ~K
K1

Vb. This

looks awkward because ~K does not have full rank. However,
~K

K1
V remains well-defined and can be expressed as the

pseudo-inverse ~K
K1

VZVðVTVÞK1. This can be seen by first

regularizing ~K with a small ‘jitter’, ~K/ ~KCs1. For the

regularized inverse one has the result ð ~KCs1ÞK1 ZsK1ð1K
VðsCVTVÞK1VT Þ from (Williams & Seeger, 2001). One

can then find ð ~KCs1ÞK1V by right-multiplication with V

and finally take s/0 to get the desired result. To further

speed up the numerics one notes that in (9) only the product

YðvK=vlÞ ~K
K1

Vb is needed to calculate the gradients. We,

therefore, pre-calculate the entire n!p matrix Y(vK/

vl)V(VTV)K1 at the beginning of each HMC simulation,

which requires O(n2pCp3) operations for each hyperpara-

meter l.

Eq. (20) tells us that at each discretized trajectory step in

the Nyström HMC, we must perform O(np) multiplications

to calculate the update of the momenta. The update (18) of q
at the end of each trajectory is of the same complexity, as is

the calculation of the quantity to be averaged in (9), which is

needed for each production sample. Overall, the Nyström

approximation to the kernel thus reduces the computational

complexity of the main loop of the HMC sampling

procedure from effectively O(n2) to O(np). Although, we

focused on the Nyström method, it is likely that similar

results could be achieved using other approaches to

approximate the kernel matrix, such as those described in

(Fine & Scheinberg, 2001).
4. Feature selection

Alternative methods for tuning the hyperparameters of an

SVM were reviewed in (Gold & Sollich, 2005) and here we

turn our attention to the problem of feature selection.

Feature selection is used in classification problems in order

to improve generalization accuracy, assist in the interpret-

ation of the problem domain, and speed up computation

times. Various specific definitions of feature selection have

been proposed; see e.g. (Weston et al., 2000). Generally

speaking, if the original data set D contains feature vectors

xi2Rd, then we would like to find some subset of the

features, x0i 2Rd 0

, d 0!d, to accomplish one or more of the

above goals. In the context of SVMs, it is worth noting that

the dimensionality of the input feature space has a relatively

benign impact on the speed of computation and thus our

focus is primarily on improving generalization performance

and subsequently on translating that improvement into

greater understanding of the problem domain.

Feature selection methods are often classified into

wrappers and filters, the difference being in whether or not

the method uses the output of the classifier in order to select

the features. Wrapper methods usually work by evaluating

the classifier on subsets of the feature space, using some sort

of greedy algorithm to organize the search of the large

(i.e. 2d) number of possible feature combinations; see e.g.

(Kohavi & John, 1997). Filter methods, on the other hand,

generally use unsupervised methods to select features.

Feature selection for SVMs was previously proposed in

(Weston et al., 2000; Fröhlich & Zell, 2004). In (Weston

et al., 2000) feature selection is performed using the radius-

margin bound on the leave-one-out error. If M is the margin

achieved on the training set and R the radius of the smallest

sphere (in the kernel-induced feature space, not to be

confused with the original input feature space) containing

all training inputs, this bound is of the form R2/(M2n).

Which input features are picked is encoded in a

binary valued vector s2{0, l}n, so that x1 ðx*sÞZx0

where * indicates elementwise multiplication. Feature

selection is performed by gradient descent on the radius-

margin bound with respect to a real-valued approximation

of s. In (Fröhlich & Zell, 2004) feature selection is

performed using recursive feature elimination based on

the regularized risk. The latter augments the error estimate

2 4 6 8 10 12 14

2

4

6

8

10

12

ARD RBF Kernel Length Scales, la

2 4 6 8 10 12 14

0.2
0.4
0.6
0.8

Average Normalized Length Scale Gradient

Gradient Ascent Step

Gradient Ascent Step

Fig. 1. Gradient ascent on Bayesian evidence for ARD RBF kernel length

scales.

C. Gold et al. / Neural Networks 18 (2005) 693–701 697
produced by the test set with the norm of the margin and is

an upper bound on the generalization error. The recursive

feature selection is a greedy search algorithm, which starts

with all features and removes them one at a time. The

regularized risk is used to guide the search by assuming the

training error does not change with the removal of each

feature, calculating the approximate change in the regular-

ized risk as the change in margin, and removing those

features for which the change in the margin is smallest.

In the ARD RBF kernel (3), the contribution of each

input feature to the kernel function is divided by a separate

length scale, la: the larger the length scale, the smaller the

contribution which that feature will make to the kernel

function. For this reason the length scales produced by the

hyperparameter tuning algorithm can be used for feature

selection simply by eliminating those features with the

largest length scales. While feature selection via ARD is

technically a wrapper approach because the output of the

classifier on the training set is used in the hyperparameter

tuning algorithm, it is distinct from traditional wrapper

approaches because it avoids searching the space of feature

combinations and instead proceeds directly to an appro-

priate feature set using principles designed to improve

generalization performance.

Feature detection using ARD was originally proposed

for backprop and RBF networks; see e.g. (MacKay,

1998). Performing feature selection by tuning the length

scales in an ARD RBF kernel of an SVM has been

suggested previously in (Chapelle, Vapnik, Bousquet,

& Mukherjee, 2002; Chu, Keerthi, & Ong, 2003; Gold &

Sollich, 2005) and in (Gestel, Suykens, Moor, &

Vandewalle, 2002) ARD is performed using a Bayesian

framework for Least Square SVM’s, also using the

Nyström approximation.
2 http://www.ics.uci.edu/wmlearn/MLRepository.html
5. Experiments and results

In (Gold & Sollich, 2005) we tested tuning the

hyperparameters with the Nyström approximation in the

HMC calculation of the evidence gradients, and compared

to results for the full HMC calculation presented in (Gold &

Sollich, 2003). We found that the Nyström method resulted

in a significant reduction of computation time at negligible

cost in performance. While the quality of the results

depended weakly on m, the number of samples for the

Nyström approximation, and p, the number of eigenvalues

used to construct the approximate Gram matrix ~K, the

requirements were modest (mw200, pw20) and crucially

did not scale with the number n of training samples. Thus,

the use of the Nyström approximation improved the run

time of the HMC simulation from O(n2) (with a large

prefactor) to effectively O(n).

We tested the generalization performance resulting from

SVM hyperparameter tuning with the gradients of the

Bayesian evidence on 13 benchmark data sets from the UCI
Machine Learning Repository2 (Gold & Sollich, 2005). The

results were compared to an ARD SVM tuned using bounds

on the generalization error (Chapelle et al., 2002) and to the

Trigonometric Bayesian SVM (Chu et al., 2003), which also

incorporates ARD. To assess the effects of ARD we

compared further with Adaboost and a non-ARD SVM.

The latter has the kernel (3) with k0Z1, koffZ0 and all

length scales la equal, and the two remaining parameters C

and l are chosen by cross-validation (Rätsch, Onoda, &

Müller, 2001). The experimental setup was to tune

hyperparameters on five random subsets of the data, set

each hyperparameter to the median value of the five trials

and then assess the resulting classification performance on

either 15 or 95 random divisions of the data into training and

test sets, depending on the number of samples available.

We found that for most of the data sets the performance

of the different systems was quite similar, with the best

average performance usually within error bars of the worst.

The one exception to this was the Splice data set, where the

two Bayesian ARD SVMs significantly outperformed the

other, non-ARD methods tested. The reason for this

improvement in performance seems to be that the ARD

SVMs correctly determine that the majority of the input

features are not relevant to the classification task, while the

presence of a large number of irrelevant features negatively

affects the performance of the non-ARD systems. The

process of tuning the length scales, la, using the gradients of

the Bayesian evidence is shown in Fig. 1 (top). The length

scales are initialized to the square root of the number of

input features because the sum in the exponent in Eq. (3)

would otherwise grow in proportion to the number of

http://www.ics.uci.edu/~mlearn/MLRepository.html

C. Gold et al. / Neural Networks 18 (2005) 693–701698
features; note that the input features are all individually

normalized to have zero mean and unit variance. The

average of the magnitude of length scale gradients

normalized by their peak amplitude is shown in Fig. 1

(bottom). The gradients are largest at the beginning of the

gradient ascent and decline quickly in the first few steps.

Thereafter, the gradient magnitudes continue to decrease in

a noisy and non-monotonic fashion until their normalized

average reaches a pre-defined stopping criterion, as

described in (Gold & Sollich, 2005).

The final length scales tuned by the Bayesian ARD SVM

are shown in Fig. 2. The top graph makes it readily apparent

that the most relevant features are clustered around the

middle of the input feature vector. A similar result was

found in (Chu et al., 2003). In the Splice data set the task is

to detect the presence of an exon/intron boundary in a DNA

sequence and the features are a raw numeric representation

of the nucleotides (i.e. fA;C;G;Tg1 f1; 2; 3; 4gÞ. The

sequences are aligned so that a boundary, if present, occurs

in the middle of the sequence. The length scales tuned by the

Bayesian ARD SVM then suggest that the nucleotides

within approximately five positions of a hypothetical

boundary are most significant to discriminating the presence

or absence of such a boundary.

Having reached these conclusions on the Splice data set

we further tested the Bayesian ARD SVM on some of the

other binary classification problems from the UCI reposi-

tory, more particularly those with the highest numbers of

features. We compared the performance of the ARD SVM

tuned with gradients of the Bayesian evidence with a non-

ARD SVM with hyperparameters tuned by tenfold
10 20 30 40 50 60

5

10

10 20 30 40 50 60

5

10

1 3 5 7 9 11

20

Tuned ARD RBF length scales, la

So
rt

ed
H

is
to

gr
am

O
rd

er
ed

30

10

Fig. 2. Splice, final length scales as tuned by ARD.
cross-validation (CV SVM). The cross-validation employed

a grid search in the logarithm of the noise parameter, C, and

of the single length scale l. The data sets considered have

been used in a variety of studies; as our interest was in

comparing the Bayesian ARD SVM and the non-ARD CV

SVM we did not attempt to replicate precisely previous

experimental setups. Instead, we adopted as a uniform

procedure for all data sets 20 runs on random splits of the

available data into 2/3 for training and 1/3 for testing. (For

the larger Spam data set only 10 runs were used with 1/4 for

training and 3/4 for testing.) No attempt was made to

balance the number of examples from each category in

either the training or the test data. Hyperparameters were re-

tuned for every split of the data. The resulting average test

errors are summarized in Table 1 along with examples of

error rates found previously in the literature.

From the results in Table 1, it appears that the advantage

in generalization performance of the ARD over the non-

ARD system may be the exception rather than the rule

among the classification problems in the UCI repository.

While the Bayesian ARD SVM has an advantage on the

Splice data, the non-ARD CV SVM has equal or better

performance on the other relatively high-dimensional data

sets. In general, the results for the Bayesian ARD SVM

suffered from the drawback discussed previously in (Gold &

Sollich, 2005): there was no single stopping criterion, in

terms of the decrease of the average magnitude of the

gradients from their peak (starting) value, that gave good

results for all data sets. In particular, while the best result for

Splice was achieved with a stopping criterion of 15% of

peak gradient magnitude, for most other data sets 30% gave

best results. We experimented with withholding a portion of

the training data in order to use the error on this validation

set as a stopping criterion but found that this did not improve

the overall generalization performance of the Bayesian

ARD SVM. In particular for the data sets with fewer

training examples (i.e. Ions, Musk, Spectf) there was not

enough data to both effectively train the SVM (including

tuning the hyperparameters) and also estimate the general-

ization performance.

In order to better understand these results, we analyzed

the length scales tuned by the Bayesian ARD SVM, to see

how the Splice data set differs from the others. Fig. 3 shows

the results using the Spam data set in which the input

features are 57 statistics of word and character occurrences

in an email and the task is to discriminate spam from non-

spam emails. In contrast to the Splice data set, where the

length scales give a relatively clear division into relevant

and irrelevant features, in the Spam task the length scales

vary gradually from the most relevant (frequency of the

character ‘!’) to the least relevant (frequency of the word

‘address’) feature, and the histogram shows a broad and

largely featureless distribution of length scales; see Figs. 2

and 3 (middle and bottom). The distribution of tuned length

scales for the other data sets varied, although they were all

Table 1

Comparison of error rates

D N Error

Bayes CV Previous

Ions 33 351 8.3G2.7 6.4G2.5 4.0

Musk 166 476 10.4G2.1 6.7G2.1 7.6

Spam 57 4601 7.3G0.4 7.5G0.5 9.2

Spectf 44 349 17.1G3.3 12.9G3.2 23.0

Splice 60 3175 6.3G1.6 10.9G0.8 5.3

WDBC (new) 30 569 2.9G1.2 2.9G0.9 2.5

Number of features, d, and number of samples, n, for high-dimensional data sets from the UCI Machine Learning Repository, along with test errorsGstandard

deviation across 20 independent runs. Previous results for each data set are reproduced from: (1) Sigilito et al. (1989), (2) Dietterich et al. (1997), (3) Bursteinas

and Long (2000), (4) Kurgan et al. (2001), (5) Chu et al. (2003) and (6) Mangasarian et al. (1995).

10 20 30 40 50 60

10

20

Tuned ARD RBF length scales, l a

10 20 30 40 50 60

10

20

So
rt

ed

1 3 5 7 9 11 13 15 17 19 21 23

5

10

15

20

H
is

to
gr

am
O

rd
er

ed

Fig. 3. Spam, final length scales as tuned by ARD.

C. Gold et al. / Neural Networks 18 (2005) 693–701 699
more similar to the distribution for Spam than to that for

Splice.

We next investigated the use of the length scales tuned by

the Bayesian ARD SVM for feature selection. In order to

have a systematic method for determining how many

features to retain, we defined the overall relevance of a

given subset of features as

uI Z

P
a2I 1=l2

aPd
bZ1

1=l2
b

(22)

where I indicates the set of features selected. This is

motivated by the form (3) of the ARD RBF kernel: since

individual features xa are normalized to have zero mean and

unit variance, the typical contribution of each feature to the

exponent in (3) is 1=l2
a. We, therefore, take this quantity as a

measure of the relevance of the feature; uI is then just the

fraction of the overall relevance captured by the chosen

feature subset. This definition accounts for the potentially

gradual variation of length scales across features, whereas a

naive feature count would not, and accordingly one may

hope that as uI is reduced from its maximal value of 1

similar changes in performance will be seen across a range

of data sets. Of course, there is not necessarily a direct link

between uI and the resulting classification performance, in a

way that would be analogous to the fraction of total variance

explained by selected components in a principal component

analysis. One could argue, for example, that the Bayesian

evidence for the selected subset (with the length scales for

the subset specifically adapted to this selection) would be a

better predictor of classification performance, but this would

be very much more expensive to compute than the simple

(22). We selected features by first fixing a threshold value

for uI, and then adding the most relevant (small la) features

until this threshold was reached or exceeded. A non-ARD

SVM was then trained using this reduced feature set, with

hyperparameters C and l tuned by CV as before; the quality

of the selected feature subset was estimated by the average

test set error over 20 random training/test splits. Effectively

we are using ARD, with its continuously varying la, as a

means of producing a ‘hard’ feature selection for a non-
ARD classifier; note that no explicit search over the 2d

different feature subsets is involved.

Table 2 (top) illustrates the results for feature selection

on three of the sample data sets. We chose features subsets

with fractional relevance uI between 0.5 and 0.8. The

performance of the non-ARD SVM on the Splice data set

improves substantially as irrelevant features are removed,

down to a fractional relevance uI of about 0.6 corresponding

to the seven most relevant features. Comparison with

Table 1 shows that at this point the performance of the non-

ARD SVM matches that of the Bayesian ARD SVM. This

implies that the further freedom in ARD of tuning the

individual length scales of the few features retained does not

translate into additional gain in classification accuracy; in

other words, the main effect of ARD is to effectively remove

the irrelevant features. As the fractional relevance uI is

decreased further to 0.5, performance of the CV SVM

begins to decline as features directly relevant to the

classification are removed.

Table 2

Results of feature selection for three selected data sets

uI Ions Splice WDBC (new)

d 0 % Features Error d 0 % Features Error d0 % Features Error

0.8 17 51.5 6.3G2.7 25 41.7 8.7G0.7 13 43.3 3.3G1.1

0.7 12 36.4 5.6G2.4 13 21.7 7.8G0.5 9 30.0 3.3G1.1

0.6 8 24.2 6.6G2.2 7 11.7 6.3G0.6 7 23.3 3.4G1.1

0.5 5 15.2 8.2G2.5 4 6.7 9.6G0.6 4 13.3 4.2G1.3

0.2 16 53.3 8.3G2.8 35 58.3 36.4G1.0 17 56.7 4.8G1.3

0.1 9 27.2 10.4G2.3 18 30.0 38.2G1.3 12 40.0 7.8G1.6

Top: results of choosing the most relevant features to make up the indicated fractional relevance uI, Eq. (22). Bottom: results of choosing the least relevant

features.

C. Gold et al. / Neural Networks 18 (2005) 693–701700
In contrast, for the WDBC data set we observe from

Table 2 that removing features never improves the

performance of the non-ARD SVM; even the least relevant

features do contribute to the classification accuracy. More

striking is the remarkable robustness of performance to the

removal of a substantial fraction of the features: for a

fractional relevance of uIZ0.6 the corresponding subset of

features chosen by ARD contains fewer than 25% of all

features but classification accuracy remains almost unaf-

fected. The Ions data set shows an intermediate scenario

where removal of features does give a slight benefit, though

this is small compared to the error bars. Data sets not shown

had results similar to those for WDBC.

In order to confirm that the Bayesian ARD SVM was

correctly choosing the most relevant features we reversed

the selection criterion and instead chose the least relevant

features in order to make up a fractional relevance uIZ0.1,

.,0.2. This results in the selection of as many or more

features as make up the top 50–70% of the total relevance. If

our method correctly discriminates relevant and irrelevant

features then we expect to see a significant difference in

performance in spite of this comparable number of features

retained. The results in Table 2 (bottom) show that when the

least relevant features are chosen the performance does

indeed drop substantially. This leads us to conclude that

the Bayesian ARD SVM correctly ranks features

according to their relevance even in cases where irrelevant

features do not harm the generalization performance of a

non-ARD SVM.
6. Conclusion

We have described a Nyström-based method for

significantly speeding up hyperparameter tuning in SVM

classifiers. Our experiments show that the advantage of the

resulting Bayesian ARD SVM over a non-ARD SVM, with

its single length scale tuned by cross-validation, is most

significant in cases where only a small minority of features

are relevant to the classification problem. Otherwise

performance differences to standard non-ARD SVMs are

within error bars. This is partly due to the difficulty of

finding a stopping criterion for the gradient ascent on the
Bayesian evidence that works well for all data sets.

Encouragingly, when using the ARD approach for feature

selection we found that it correctly ranks features by

relevance even in cases where it does not achieve

performance superior to the non-ARD CV SVM.

As noted above, because the computational cost of

training an SVM does not scale significantly with the

number of input features there is less of an incentive to

pursue feature selection unless it results in tangible

improvements in the generalization performance. It should

be emphasized, however, that the ARD approach manages

to prune correctly up to 75% of all features as irrelevant,

without significantly impairing performance. In the context

of previous work on feature extraction for classification

problems this would be considered a substantial success.

What has changed the context for evaluation is the fact that

while past classification systems such as decision trees and

back-propagation networks suffered significant perform-

ance losses in the face of a moderate proportion of irrelevant

features, the SVM classification algorithm seems to have

rendered feature selection somewhat marginal since even

with many features of low relevance performance is not

necessarily impaired. Still, feature selection may be useful

for knowledge discovery: if the goal is to improve

classification performance by adding previously unused

features it is clearly helpful to know which of the currently

used features actually contribute to performance.

Furthermore, these observations pertain mainly to what

we would consider ‘traditional’ classification problems

where the input features have been selected by human

domain experts, and consequently, it is unlikely that so

many features will be irrelevant as to impair classification.

However, recent work has applied SVMs to classification

tasks with inputs containing a large number of automatically

generated features, e.g. in machine vision or DNA analysis

(Weston et al., 2000). In such situations there is no a priori

guarantee that all or even most of the features generated will

be relevant to the classification problem and feature

selection with a technique like the Bayesian ARD SVM

should remain beneficial. At present, we are experimenting

with this approach to evaluate the usefulness of various

features generated for visual object classification, with

encouraging preliminary results.

C. Gold et al. / Neural Networks 18 (2005) 693–701 701
To facilitate further research in this area, we are planning

to make the C code with our implementation of Hybrid

Monte Carlo sampling using the Nyström approximation

available to other researchers, at http://www.mth.kcl.ac.uk/

wpsollich.
Acknowledgements

This work was supported in part by the IST Programme

of the European Community, under the PASCAL Network

of Excellence, IST-2002-506778. This publication only

reflects the authors’ views.
References

Bursteinas, B., & Long, J. A. (2000). Transforming supervised classifiers

for feature extraction (extended version). 12th IEEE international

conference on tools with artificial intelligence (ICTAI’00).

Chapelle, O., Vapnik, V., Bousquet, O., & Mukherjee, S. (2002). Choosing

multiple parameters for support vector machines. Machine Learning,

46(1-3), 131–159.

Chu, W., Keerthi, S., & Ong, C. (2003). Bayesian trigonometric support

vector classifier. Neural Computation, 15, 2227–2254.

Cristianini, N., & Shawe-Taylor, J. (2000). An introduction to support

vector machines. Cambridge University Press.

Dietterich, T. G., Lathrop, R. H., & Lozano-Perez, T. (1997). Solving the

multiple instance problem with axis-parallel rectangles. Artificial

Intelligence, 89(1-2), 31–71.

Fine, S., & Scheinberg, K. (2001). Efficient svm training using low-rank

kernel representations. Journal of Machine Learning Research, 2, 243–

264.

Fröhlich, H., & Zell, A. (2004). Feature subset selection for support vector

machines by incremental regularized risk minimization. IEEE

international joint conference on neural networks (IJCNN), 3, 2041–

2046.

Gestel, T. V., Suykens, J. A. K., Moor, B. D., & Vandewalle, J. (2002).

Bayesian inference for IS-SVmS on large data sets using the Nyström

method. Proceedings of the world congress on computational

intelligence-international joint conference on neural networks

(WCCI-IJCNN) pp. 2779–2784.
Gold, C., & Sollich, P. (2003). Model selection for support vector machine

classification. Neurocomputing, 55, 221–249.

Gold, C., & Sollich, P. (2005). Fast Bayesian support vector machine

parameter tuning with the Nyström method. Proceedings of the

international joint conference on neural networks, Montreal, Canada.

Kohavi, R., & John, G. H. (1997). Wrappers for feature subset selection.

Artificial Intelligence, 97(1-2), 273–324.

Kurgan, L. A., Cios, K. J., Tadeusiewicz, R., Ogiela, M., &

Goodenday, L. (2001). Knowledge discovery approach to auto-

mated cardiac spect diagnosis. Artificial Intelligence in Medicine,

23(2), 149–169.

Kwok, J. T. Y. (2000). The evidence framework applied to support vector

machines. IEEE Transaction on Neural Network, 11(5), 1162–1173.

MacKay, D. (1998). Introduction to Gaussian processes Neural networks

and machine learning: NATO-ASI Series F: Computer and systems

sciences, vol. 68. Springer pp. 135–165.

Mangasarian, O. L., Street, W. N., & Wolberg, W. H. (1995). Breast cancer

diagnosis and prognosis via linear programming. Operations Research,

43(4), 570–577.

Neal, R.M. (1993). Probabilistic inference using Markov chain Monte

Carlo methods. Technical Report CRG-TR-93-1, University of

Toronto.

Opper, M., & Winther, O. (2000a). Gaussian process classification and

SVM: Mean field results and leave-one-out estimator. In A.J Smola, P

Bartlett, B Schölkopf, & D Schuurmans, Advances in large margin

classifiers (pp. 43–65). Cambridge, MA: MIT Press.

Opper, M., & Winther, O. (2000). Gaussian processes for classification:

Mean-field algorithms. Neural Computation, 12(11), 2655–2684.

Rätsch, G., Onoda, T., & Müller, K.-R. (2001). Soft margins for AdaBoost.

Machine Learning, 42(3), 287–320.

Seeger, M. (2000). Bayesian model selection for support vector machines,

Gaussian processes and other kernel classifiers NIPS 12, pp. 603–609.

Sigilito, V. G., Wing, S., Hutton, L., & Baker, K. (1989). Classification of

rader returns from the ionosphere using neural networks. John Hopkins

APL Technical Digest, 10, 262–266.

Sollich, P. (2000). Probabilistic methods for support vector machines NIPS

12, pp. 349–355.

Sollich, P. (2002). Bayesian methods for support vector machines:

Evidence and predictive class probabilities. Machine Learning, 46,

21–52.

Weston, J., Mukherjee, S., Chapelle, O., Pontil, M., Poggio, T., & Vapnik,

V. (2000). Feature selection for SVMs NIPS 12, pp. 668–674.

Williams, C. K. I., & Seeger, M. (2001). Using the Nyström method to

speed up kernel machines NIPS 13, p. 682.

http://www.mth.kcl.ac.uk/~psollich
http://www.mth.kcl.ac.uk/~psollich

	Bayesian approach to feature selection and parameter tuning for support vector machine classifiers
	SVM classification
	Bayesian interpretation of SVMs
	Evidence gradients

	The Nyström approximation to the Gram matrix
	Application to evidence gradient estimation by HMC

	Feature selection
	Experiments and results
	Conclusion
	Acknowledgements
	References

